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1. Introduction.

1t haé been knovm for a number of years that functional differential
“equations play an important role in the modeling of many mechanical and elec-
trical systems. Interest in equations of this type has continued to grow
as it has become apparent that they are also of imﬁortance in areas of bio-
medical modeling (physiological and hormonal control systems). Many authors
have contributed to the growing literature on the mathematical ﬁheory of
control of functional differential equations: Halanay (Rumania), Lee and
COworkers (uU. Minnesota), Delfour and Mitter (MET), Weiss and coworkers (U.

Maryland) are just a few in the long list of contributors. Mathemeticians

Lt

from the USSR have made numerous advances in this area: Kharatishvili,

Kirillova, Gabasov, Curakova, Krasovskii and a number of investigators at

Patrice Lumumba University (Moscow) [ see Trudy Ceminara po Teorii Dif-
ferencial'nye Uravnenija s Otklonyayuggimsya Argumentom, Moscow, Vol. 1-7,
1962-1970) -should be included in this group. Much of the work of these
and other authors has dealt with problems having terminal or target sets in
R”. several review papers and articles with extensive bibliographies on
theséﬂrésults have appééred ([11, [5], [15], [29] and the volumes of Trudy
_Ceminara cited above.)
We shall motivate below’ﬁroblems involving functional differential
equations with terminal conditions in function space. Stﬁdy of problems
of this type has been much less extensive and we shall attempt a brief
--survey in which we- report- those results known to us at the present. Many
of these results aré very recent while some'of the older investigations
(beforé 1970) due to Soviet mathemsticians appear to be unknovn to some re-

searchers in this country.
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We shall, for ease in exposition, restrict our discussions mainly

to the simplest linear neutral (retarded if A, = 0) n-vector system with

1
lags

(1.1) x(t) = Al(t))'c(t-h) + Ae(t)x(t) + AB(t)x(t-h) + B(t)u(t),

although, as we shall point out whenever appropriate below, a great deal of
the work reported here has been carried out for much more general (includ-
ing nonlinear) systems of retarded and/or neutral type. The subject of our

subsequent paragrephs involves the control of system (1.1) from X, = )
0

to x_ = {, where x_ denotes the segment x(t+s), -h < s <O, of the

t1 t

trajec%ory. x (i.e. xt(e) = x(t+0), 6 € [-h,0]), and 9,{ are given
functions in some properly chosen space of functions on [-h,0] into r™,

As a first example where problems of'this type occur we suppose that
. (1.1) represents a system which we would like to drive to x =0 énd have
' 1t remain there if we shut off the controller and no other disturbances are
present (i.e., the so-called "regulator" or "settling" problem); Then it is
quite-oﬁvious that the desired terminal condition is th = 0, not x(tl) = 0,

A second example involves boundary control of the wave equation (for

a more detailed discussion see [6], [23]). Suppose w(x,t) is a solution to

(1.2) w,, - 02w =0 (x,t) € [0,1] x [0, ¢

tt XX l}

with boundary conditions



ao(t)wt(o,i:) + (0w (0,%) = £,(%,w(0,1t))
(1.3). * | t €[0,t,)
al(t)wt(l,t) + bl(t)wx(l,t) fl(t,w(l,t))

and initial-terminal conditions

w(x,0) = ao(x) w(x,tl) = al(x)
(1.1) o - . x € [0,1].
w50) = B lerty) = By

4

It is assumed that controls are contained in the terms fi. (For example,

we might have fi(t, w) = d,w+ é;ui(t), i=0,1.) Assuming a solution in

tems of D'Alambert wave functions

(1.5) w(x,t) = o(t +.-§) + ¥(%. - %),
we substitute into (1.3) and differentiate once. A few algebraic manipula-

tions yield the neutral equations for the differentiated wave functions .

(@',%") = (y,2)

y(t) + r(t)z(t -

ol
-~
Il

Ry (t,(+),2(+))
(1.6)
() + s(t)z(t -

~—r
Il

ol

P, (4,(-),2(+))

- for T € [%, tl],*where the For Fq terms contain-the controls -and depend’

on y( s),' z(s), s <t, in a complicated but precise way. Under appropriate



assumptions [6] the data in (1.4) can be transformed into data for y on

(o, %] and at tl while the values of z are given on [ - %, }] and
2

[ty - = tl]. This initial data for (y,z) is sufficient tc solve (1.6)
for (y,z) = (¢',¥') in Wél) (absolutely continuous functions possessing
L, derivatives). It can be argued that (1.5) then yields a weak solution

for (1.2) subject to (1.3), (1.4) in the sense that w is CT¥ with w

t?
w_ in Wél) and the equation (1.2) is satisfied a.e.

That a relatiohship between hyperbolic partial differential equa-
tions and functional differential equations of neutral type exists has been
known for some time and this idea has been explored by a number of =zuthors
[6, 8, 9, 12, 23, 35]. We femark that the boundary conditions (1.3) incliude
as special cases those usually associated with transverse vibrations of a

string or longitudinal vibrations of a rod, the ends of the string or rod

belng elastically supported.

In the following sectlons we shall report results of 1nve5u1ga—

flons ‘on three important questions for problems of the type formulqted
above: controllability, existence of optimal controls, and necessary

and éufficient conditions for optimality.



2. Controllability.

Kirillova and her colleagues [ 14, 15, 25, 26] were among the first
to study controllability of delayed systems, their main emphasis being on

retarded'systems with constant coefficients

(2.2) . x(t) = Ax(t) + A5x(t-h) + Bu(t),
X € Rn, u € Rr, for which they sought computable (testable) criteria for
controllability. They carefully formulated two types of controllability of

interest:

Definition 2.1. System (2.1) is relatively (nuil) controllable on [O,tl]

if, given any ¢ € &, there exists an admissible control wu such that

v

x(t];¢,u) =.0.

Definition 2.2, System (2.1) is (gull) controllable on [O,tl] if, given

any ¢ € &, there exists an admissible control wu such that X, (@,u) = 0.
. - l

Here and elsewhere throughout this note x(+,0,u) will denote the solu-

tion to the system being discussed (system (2.1) in the above definitions)

B

| corresponding to initiai-data Xy = @ :(tO = 0) and control u. In théir investiga-
tions Kirillova, Curakova, and Gabaso§ use the class of piecewise continuous
controllefs as the admissible class while ¢ = {o: [-h;O] —>Rnl ¢ piece-

" wise continuous}. We shall refer to the controllability.defined in Defiﬁi-

“tion 2.1 as Euclidean spacé (null) controllability while that defined in

Definition 2.2 will be called function space (null) controllability. Further-

more, we shall say (see [251) that (2.1) is relatively controllable if given

A



¢ € &, there exist admissible u and tl (depending possibly on @) such

that z(tl;$,uQ = 0. A similar definition will be taken for controllability

of system (2.1).

~In [25] the authors give necessary conditions and sufficient condi-
tions for relative controllablé in terms of rank conditions on certain
matrices P and Q vrespectively, P and Q being formed from the co-
efficient matrices in the system (2.1). They show that for B = beR"

(r=1) and n < 3, rank P = rank Q and the conditiohs are necessary and

sufficient. They offer a number of additional results:

Rl: For pure delay systems (A2 =0 in (2.1)) with B=b eR® (r = 1),
controllability <= relative controllability.

‘ B
R2; If B is nonsingular ( = B square, r = n), then (2.1) is control-

lable. {Actuﬁlly, it is easily seen that if- B has rank n {r > n),

*
then BE is invertible and {(2.1) is controllable. One can choose

* *, -
u(t) = -B (BB ) "Azx(t-h) for t € [t -h,t,]

after having chosen u

on [o,tl-h} so that x(t]--h)_=0.}

o 0\ 0 , ~ ~
R3: 1If A5 ={ .1, B=| ] vhere A3 is rXn, B is r Xr and if
T , \8)  \B

B has rank r, r < n, then relative controllability => controll-
. ability. - This can be used to show that the nth order scalar retarded

equations -

2 () g aix(n’i)(t) + 2 bisc(n'i)(t-h) = bu

n
i=1 i=1

are controlliable if b % 0. {Using arguments similar to thosein a



T
in a closure lemma of Banks and Jacobs [7; Lemma 3.1 and Remark 3. 4]
one can actually estdblish that nth ordér scalar neutral equations
n . n .
x(n)(t) + 2 aix(n'l)(t) + 7 bix(n'l)(t-h) = bu
i=1 "i=0
. (n-1)

are controllable (for b # O) from an arbitrary ¢ such.that o
is absolutely continuous with L,, derivative (i.e., e,wgn)([-h,O],Rl))
to an arbitrary ¢ in Wén)([-h,o],Rl). The functions ¢,{ may be

1 if Ll controls are used in place of L2 controls

(see t7]).} |

In [26] the emphasis is on resolving the discrepancy between nec-

essary conditions and sufficient conditions for relative controllability (al-

- though extensions of results to systems with time-varying coefficients are

also made). These ideas are developed further in [14, 15]. Since [15] con-

tains all the results of [26] and [1L4] (some in improved form), we shall re-

strict our comments to results in [15].

The equation

Q’k(s) = AEQ’K-l(S) + ABQ’_k-l(s"h): s >0, k=1,2,...

Q,(0) = B, Qy(s) =0 for s #0,

, :
is called the defining equation for (2.1). One then defines for every «a > 0

n, = {Qk(s)| k =_O,l,...,ﬁ_l; s € [0,0h]]}



and says that the defiﬁing equation is o non-degenerate if rank HO = n,
The authors' main result is (an analogous result is derived for neutral

systems (1.1) with constant coefficients):

Theorem 2.1. System (2.1) is relatively controllable on [o,t if and

1]

only if the defining equation for (2.1) is « non_degenerate“for Q= [tl/h].
The authors also sharpen the ?esults mentioned above from [25]. |

For the system discussed in R3, one actually has relative controllebility &
controllability; Also, Tor systems with pure delay (AE.E 0) with rank

AS =n and rank B = r, they argue that relative controllability <= con-
trollability. Aswas pointed outin 3& above, if B = Db € R" (r = 1), the
condition "rank A3 = n" can be omitted.

In the results described above the suthors have obsérved that for
certain types of systems relative controllability is equivalent to contrcl-
1ability in which case the algebraic criterias of Theorem 2.1 are applicavle.

~Examples of systems which'are relatively controllable but not controllable
are givén in [ 15] and demonstrate that in-general these conéepts are quite
different.

The autho%s discuss a general scheme (applied to several examples)
for investigating controllability of certain systems of type (2.1). Finally,

Mjhej éffer conditions that are sufficient for controllability of (2.1) when-
ever the delay h is sufficiently small,

Weiss in [36] considers essentially (null) controllability as

defined in Definition 2,2 above for n-vector retarded systems



(2.2) k(1) = Ap(£)%(8) + A5 (£)x(t-h) + B()u(t)

with bounded measurable controls u. His main result is:

Thecrem 2.2, System (2.2) is controllable on [ty %] if
(i) rank G(to,tl_h) =n

(ii) for every ¢ € C([-h,O],Rn) and for scme bounded measurable

u on [to,tl_h] such that x(tl-h;@,u) =0 (x is the

“ solution to (2.2) on [to,ﬁl_h] with control u and initial
data X'to = cp), the equation B(t)v(%) = -AB(t)x(t_h;cp,u) has

a bounded measurable solution v on[trmtﬂ.

: t.-h
* * :
Here G(ty,t,-h) = £ b X(t,-1,5)B(s)B" ()X (ty-h,s)ds where X(t,s) is

O .
the usual "fundamental" matrix solution appearing in the variation of para-

ﬁeters formula and satisfying (as a function of s) the well-known adjoint to
the uncontrolled form of (2.2). As the author points out, (ii) will always
hold if A5 has the form A5('b) = B(t)D(t) for some bounded measurable
n X1 matrix function t - D(t). . |
In [36] Weiss also discusses extensions of certain standard con-
trollability arguments for nonlihéaf ordinary differential eqﬁation systems
to.éstablish controllab;lity results for nonlinear retarded systems.
A'somewhat different approach to the controllability question has
been taken by Halanay [ 17] and Popov [34]. Both authors use tfansfer fune-

tion techniques to.consider the n-vector system with scalar controls



10
(2.3) ‘ x(t) = A x(t) + A3x(t_h) + bu(t)
vhere b € R°. Halanay, motivated by the nth order scalar retarded equa-
tions already mentioned above, makes the further. assumption that ‘A5 = ba;

where a§ is an n-column vector. Thus to obtain (null) controllability

on [o,tl] (as in Definition 2.2), it suffices to effect x(tl-h;m,rO =0
by choice of a control u on [0,t,-h] and then take u(t) = -a;x(tuh)

for t €& [tl-h,tl]. Halanay Shows that this system is controllable if and
only if x(t) = Aax(t) + bu(t) is controllable in the usual sense and
ﬁherefore-reduces.the study of (2.5) fo a study of ordinary differential
equation controllability. He uses piecewise continuous controls as his
class of admissible controls. We note that in fact the results of Xirillova,
et.al. [14, 15, 25, 26] discuséed above are directly applicable to these
systems since in this case relative controllsbility on [O,tl_h] implies
contrpllability on [O,tl]. |
Popov [ 34] introduces the concept of complete reachabiliﬁy: Sys-

tem (2.3) is completely reachable if there exists a positive integer p such

-that for.every €, 0 < € <h, and every w ¢ Cp([_h+e,0],Rn), there exist

t, >h and continuous control u on [O,t,] such that x(t;0,u) = w(t-tl)
for t € [tl-h+€,tl]. Defining the function g(s,z) = (sI - A, - zAB)'lb
[ . . -sh - ' -sh, -1
recall that the transfer function is g(s,e”™ ) = (sI - Ay, - & A5) b},

the avthor notes that g can be written

(s,2) = Bis)viz)
A 2 €

~7ZA.
2 j)
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‘ . . n-1
where +v(z) is an n-column vector with coordinates 1,z,z ,...,z and

P(s) is a polynomial of degree n-1 with n X n matrix coefficients.

Popov then proves:

Theorem 2.3, The system (2.3) is completely reachable if and only if there

exists 55 such that P(So) is nonsingular.

Furthermoré, he shows‘that complete reachability impiies control-
lability, in the sense'that: For everj € >0 and every ¢, in
cP([ -h+e,01,R"), there exists a continuous control a on [0,t,]
solution  x to (2.3) corresponding to u satisfies‘ x(t) = o(t), t€
[ -h+e,0], x(t) = C(t_tl), t e [tl-h+e,tl].
It is obvious that while this is a type of function space control-
lability, it ié not equivalent to the concepﬁ introduced in Definition 2.2
* above (i.e., where one has terminal boundary conditions on x, the "state"
of the system). It is not yet clear how Popov's fesults might be of use in
istudying these more nétural concepts of controilability.
i " Another type of function space controllability that differs from
| that under consideration here was s;ﬁdied by Zmood [37]. System (2.1) is

completely function space controllable at time, tl >h if for every € > O,

j every ¢ € C{[-h,01,R"), and every ¢ € L2([-h,0],Rn), there exists ue
| L2([O,tl],Rr) such that ~|§_xtl(@,u)|2 <e, where | |, denotes the usual
norm in Lg([-h,o],Rn). Like Popov's results, Zmood's work yields little

more than a density result for the problems under discussion in this note.

-——Results of this type are not -adequate to yield’the desired information for

the "regulator" or "settling" problems (xt = 0).
) . 1

such that some
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A humber of other authors [Z2, 13] have investigated controllabvility
of functional differential equations to terminallfunctions and have derived
results in terms of certain abstract mappings related to these systems.
These theorems have not, as yet, led to any coﬁputable or testable criteria
for controllability.

It is evident that muich remains to be done in the area of function
spéce controllability as the concept is formulated in the introduction of

this note.
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3. Existence of optimal controls.

The question bf existence of optimal controls for problems with
function space terminal conditions has been answered much more completel&
than has the question of controllability posed in the preceding section.

A nunmber of authors have given satisfactory treatments to the existence
guestion,; showing in most cases that, with proper modifications, the
hypotheses and argumerits used in existenée theorems for ordinary differ-
ential equation control-systems can.be employed to obtain theorems for
control problems with functional differential equation systems.

One of the first to consider existence of optimal controls for
problems of the type being discussed here was Angell [2, 3]. Using the
methods and closuré'ideas of Cesé}i [10, 11] and an extension of Filippov's
lemma due to McShane and Warfieid [30], Angell obtains existence of optimal
controls for problems involving general nonlinear retarded systems and func-
:tion space boundary conditions. In [4] he extends these arguments to sys-
items governed by neutral equations. |

, In his thesis [23] Kent shows that quite general éxistence results

i such as those of Jaéobs [21] can be extended to establish results for prob-

g lems involving certain nonlinear neutral'functional differential equations.

! Existence theorems for a general class of linear-in_the_state; nonlinear-
in-fhe-controls neutral systems were derived by Banks and Kent in [6] through
use of attainable sets arguments in C([-h,O],Rn). Unlike the situation

for ordinary and functional differential systems with terminal targets in

R" [5, 21, 31], it is observed in [6] that the usual convexity assumptions
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for the control term in the system is crucial. (The well-known Liapunov
theorem arguments (see [Ei) employed in the proof for finite dimensicnal
terminal sets do not extend to infinite dimensional cases.) Furthermore,
the authors in [6] show by example that the regularity (existence in
smoother classes of controls) and bang-bang.results usually associated
with linear ordinary differential equation control systems [18, 19, 20]
do not obtain for problems with termiral function conditions.

Finally, Jacobs and Kao [22] (see also [6]) show that the usual
weak compactness arguments in L2 can ve used to.obtain existencé theorerns
for probleﬁs of the type being considered with linear retarded system eqia-

tions and Lagrange payoffs with quadratic integrands.
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Lk, Necessary and sufficient conditions for optimality.

Necessary conditions for optimality for the problems under discus-
sion in this note have been obtained recently in [6, 7, 22, 23, 24]. Ve
shall present one statement of these results here and then discuss varia-

tions of this theorem as found in the references cited. Consider then the

t
problem: Minimize J = [ lfo(x(t),u(t),t)dt subject to (1.1) on [to,tl]
4

0 (1)

and x, =0, x, = {, where ¢,{ are given functions in W2 ([ -h,O},Rn),

tO 1

and u is to be chosen from %= {u: [to, tl] - er u is bounded measurable,

w(t)e U for te [‘bo, 'bl]} with U & given nonempty subset of R..

Theorem 4.1, Suppose (x ,u ) is a solution to the above problem. Then

there exist a° <0, ¥t [t5,®) »B™, ur R" >R with ¥,u of bounded

variation and left continuous, j+ constant outside [-h,0], such that

1) ¥= @°,0

(\lfo, Wl, cee ,Ilfn)' satisfies

Il!o = o° <0
) . ¥(s) = O s>t
. tl .
Y(s) = .-p.(s-tl) + \y(s+h)Al(s+h) + [ W(G)AB(G)dG
) s+h )

¥ o of° P * :
A L ZW(8)A,(0) + ¥ o—(x(6),u (0),68)}d6 for s.€ [ty,t,]
S

t E 3
(11) [ HCeP(x (8),u(e),0) + ¥(6)B(8)u(6))ae
t
0

t * * ) *
< [ HCe%(x(0),u (6),0) + ¥(0)B(6)u"(6)}ds
%o

m
®

for every u




The above theorem is a special case of results proven in [6].
Before discussing this fufther, we point out that the adjoint variables (co-
states, multipliers) V are, for the neutral case, in general only of

- bounded variation on [to,t If A.‘l = 0 (retarded systems), then V'

l]'
is absolutely continuous on [to,tl-h] where it satisfies the differentiated
form of the "adjoint" equation in (i) above. Furthermore, in.this case

{(v(s) + u(s_tl)} is easily seen to be absolutely continuous on [tl_h,tl]

-where it satisfies

.oa o of°*
3 Eé‘{\lf+|.l]=—w 3x "‘IVAQ'

In [6] Banks and Kent derive the above theorem (with, of course,
the appropriate changes in the statement) for general neutral systems of the

form -

t
%E{X(t) - I e, 9)x(s)) - f(x(-),u(t)v,ﬁ)

to-h

where“-f(t,-) is a measure depending also on the parameter t -and satis-
fying certaiﬁ techﬁical but not very restrigtive hypotheses. Here
-f(x(-),,u(t),t) denotes dependence of f(-,u(t),t) on any or all of the
*__valﬁeé "x(ﬁ),_jo-h <s <t The,apprpachutaken in the proofs evolved from
ideas invplving bounded state variable techniques and utilizes the abstrgct
ﬁultiplier rule for éxtremals as developed by Neustadt [32, 53] and
Gamkreiidze [16]. Comments on the similarities between the behavior (jumps,

“etc.) of p  and that usually a35001ated w1th maltlpllers for bounded state
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state variable problems can be found in [6]. In case £ go(x,t) +
ko(u,t) with x —>g°(x,t) convex and the system is linear, the authors
show that if x  is a trajectory cérresponding to u*eéék and the condi-
tions of the above -theorem can be satisfied for some QP,W,u with. o < 0.
(normality), then (x*,u*) is a solution to the problem. That is, for
linear systems, convexity of go and normality imply the necessary condi-

tions are also sufficient.

Thé theorems obéained in the above cited paper suffer two notable
difficiencies: (a) the authors offer no general classofproblems for which
normality can be esﬁablished; (b) indeed, no proof that (ao,p) 4 0 for some
class of problems (non_triviality of the necessary conditions) is presented.
Howevef, the authofs do discqss a ﬁumber of solved examples which demon-
strates thét'the éiass of problems for which the conditions are necessary
and sufficient, and for which they offer nontrivial conditions, is non-
vacuous. — |

- A number of other examples, along with necessary conditions for

somewhat more general problems invdlving variable endpoints in function

spacé can belfoundvin Kent's thesis [23; see also 24],

{ © Jacobs and Keo [22] also consider the Lagrange problem above but for

retarded systems with delays in the controls x(t) = £(x(t),x(t-h),u(t),

: 1

~u(t-1),t). Using the Lagrange Multiplier Rule [28] “in Wé ) for an uncon-
strained class of controls %= Le([tO-T,tl],R?), they derive necessary .

) .
_ _conditions in a form analogous to ~5% = 0, where H is the properly de-

fined Hamiltonian function for these systems:
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H({y‘,x,u,t) = £O(x(t),u(t),t) + w(t)f('x(t),x(t-h),u(fc),u(t-r),t)'

+-w(t+1)f(k(t+1),x(t+7_h),u(t+1),u(t),t+r).

As can be seen with relatively.straightforward arguments, the cohditions ob-

tained in [6] and [22] are essentially equivaleﬁt (with one exception) when-
- ever the problem is such that the results of both papers are applicable.

The one exceptibn concerns normality (ao # 0), which Jacobs and Kao ob-
"tain automatically via ﬁse of a Lagrange multiplier rﬁle that requires a

very restrictive assumption. For linear retarded (Al = 0) systems (1.1)

this assumption takés the form: . rank B(t) = n for a.e. t in [tl_h,tl].
We note that a version of Jécobsf and Kao's results could have been obtained
~in the absence of this restrictive.assumption by use of a corollary to the

multipliervrule citedvabove [28; p. 24k]. However then normality is not

obtained and the results suffer the same deficiencies as those of Banks

and Kent mentioned above. ) |

-~ . Jacobs gnd Kap also discuss sufficiéncy of their conditions under

hypotheses similar to those already detailed in the preceding paragraphs.

o *Banks and Jacobs [ 7] use a geometric approach to the prcblem stated
above. Using a class of unconstrained controls % = L2([to’F1]’Rr) they
employ attainable sets arguments (see [27]) in Wél)([tl-h,tl]),Rn) to de-

——pive-essentially the conditions in Theorem 4,1 -with normality (and-hence
sufficiency) assured. . The assumptions under which normality is guaranteed
(pontrollability type assumptions on the system and the relatively weak

hypothesis on B: p(t) = rank B(t) is constant on [tl-h,tl]) are much

less restrictive than those in [22]. As is pointed out in [7]; these
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- assumptions are weak enough to include the general n b order scalar neutral

equation with scalar control in the class of systems to ﬁhich the results
are applicable,

One difference between the form of Theorem 4.1 derived in [ 7] and
that given above is that in [ 7] the multiplier .u is only L2, not nec-
esgarily of bounded'variation, so that for the neutral systemé (1.1) the
multiplier V¢ may aléo.only be in L2([to,tl],Rn). For retarded systems
(Al =0 in (1.1)) one again does find that {V¥(s) + u(s-tl)j and V(s)

are absolutely continuous on [tl-h,tl] and [to,tl-h] respectively.
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